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Abstract
The Noether charge algebras of D-brane actions contain two anomalous terms
which modify the standard supertranslation algebra. We use a cocycle approach
to derive associated spectra of topological charge algebras. The formalism is
applied to (p, q)-strings and the D-membrane. The resulting spectra contain
known algebras which allow the construction of extended superspace actions.

PACS numbers: 11.25.Uv, 02.10.Hh

1. Introduction

Various types of branes are classified according to the CE (Chevalley–Eilenberg) cohomology
[1] of their field strengths. For p-branes, the WZ (Wess–Zumino) term is the pullback of a
superspace form defined by its field strength. This field strength is the unique, nontrivial
(p + 2)-cocycle of the CE cohomology with the correct dimensionality [2]. A similar
classification also occurs for D-branes [3, 4]. The CE nontriviality of these brane field
strengths has some interesting consequences.

First, the WZ term is necessarily super-Poincaré invariant only up to a total derivative.
As a result, when the topology of the background superspace is nontrivial, the Noether charge
algebra can be extended by a topological ‘anomalous term’ [5]. For branes with worldvolume
gauge fields, there is a second modification to the algebra that results from the transformation
properties of the gauge field [6, 7]. For D-branes, this modification is due to the presence of
the BI (Born–Infeld) worldvolume gauge field. Terms of the D-brane Noether charge algebra
associated with bosonic topology were explicitly found for the type IIA cases [7]. One must
necessarily solve a series of descent equations to find the anomalous terms. Representative
solutions to the D-brane descent equations were found, and the associated bosonic topological
charges were given [8–10].

There is a construction involving ghost fields which describes the appearance of anomalous
terms in Noether charge algebras. In this construction, the anomalous term for the p-brane
arises as an element of the second cohomology of a ‘ghost differential’ acting on a loop
superspace [11]. The appearance of anomalous terms in the D-brane Noether charge algebra
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can be described in a similar way [12]. The cohomological descent nature of the equations is
manifest in this approach.

Extended superspace formulations have been considered in the case of both p-branes
and D-branes. In the case of p-branes it was noted that extended superalgebras exist
which allow manifestly super-Poincaré invariant WZ terms to be constructed [3, 13, 14].
Extended superspace actions for (p, q)-strings, D-branes and string–brane systems can also
be constructed [3, 4, 15–17]. In all these cases, one seeks extended supertranslation algebras
which trivialize the brane field strengths with respect to CE cohomology. Topological
charge algebras of standard actions start to resemble these extended algebras once fermionic
topological charges are considered. For example, superspaces which include both bosonic and
fermionic topological charges can be candidates for the construction of extended superspace
actions [18]. In general, the bosonic topological charges now become noncentral. The explicit
construction of fermionic charges was considered in [17, 19, 20].

Recently, we approached p-brane topological charge algebras from the point of view of a
single cocycle associated with the p-brane [21]. The WZ field strength and the anomalous term
are described as two different representatives of this cocycle. Due to gauge transformations
of the cocycle, the anomalous term is described as a full cohomology class. For the standard
superspace action, this class is unique and nontrivial. Due to the gauge freedom, there is a full
‘spectrum’ of topological charge algebras resulting from the anomalous term. Upon retaining
the terms associated with fermionic topology, the algebras used in extended superspace
formulations of p-branes appear in the spectrum of topological charge algebras of the standard
action [21, 22].

In this paper, we generalize this work to the case of D-branes. There are two nontrivial
cocycles associated with the D-brane, and each one generates an anomalous term of the Noether
charge algebra. The topological charge algebras resulting from these anomalous terms are
shown to be extensions of the standard supertranslation algebra by two disjoint, commuting
ideals. Explicit representatives of both anomalous terms are found for the (p, q)-strings and the
D-membrane. We generalize previous work in this regard by retaining the terms associated
with fermionic topology. For the string, gauge freedom is used to generate a spectrum of
topological charge algebras which is invariant under type IIB SO(2) rotations. A topological
charge algebra for (p, q)-strings is then deduced. For the membrane, the topological charge
algebras associated with the NS–NS (Neveu–Schwarz) potential are derived. Although only
the string and membrane algebras are explicitly derived, subalgebras associated with the NS–
NS potential are common to all type IIB and type IIA D-branes, respectively. In both cases, the
spectrum of topological charge algebras contains known algebras which allow the construction
of extended superspace actions.

The structure of this paper is as follows. In section 2, standard D-brane actions in flat
backgrounds are reviewed. Two additional formulations of the action are then presented: a
manifestly invariant formulation, and a set of SO(2) dual actions for type IIB backgrounds.
In section 3, the cocycle approach is generalized to D-branes. We review the relation between
anomalous terms of the Noether charge algebra and the nontrivial cocycles of the D-brane. The
single cocycle approach is presented. The resulting topological charge algebras are shown to be
extensions of the standard supertranslation algebra by disjoint, commuting ideals. In section 4,
the general formalism is first applied to an SO(2) dual set of D-strings. Representatives of
the anomalous terms are found, and gauge freedom is then used to generate a spectrum of
SO(2) invariant topological charge algebras. A gauge fixed algebra for the (p, q)-strings is
then deduced. In section 5, representatives of the anomalous terms of the D-membrane are
found. A spectrum of topological charge algebras associated with the NS–NS potential is then
derived. In section 6, we comment on the results.
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2. D-branes

2.1. Standard actions

For this paper we will work with the standard, flat, background superspaces in d = 10. The
backgrounds are defined by the chirality of the spinors. Weyl spinors are eigenspinors of the
idempotent ‘chirality matrix:’

�11 = �0 . . . �9. (1)

Since �11 is traceless, the eigenvalues are ±1 in equal numbers. Majorana spinors satisfy
θα = θβCβα , where Cβα is the antisymmetric charge conjugation matrix. Type IIA superspace
consists of a single Majorana spinor (or equivalently, two Majorana–Weyl spinors of opposite
chirality). Type IIB superspace consists of two Majorana–Weyl spinors of the same chirality.
For type IIB superspace it will be assumed that spinor indices are accompanied by a suppressed
index I = (1, 2) which identifies the spinor. The Pauli matrices (σi)IJ act upon these indices.
Indices on Pauli matrices are raised and lowered with the Kronecker delta, while indices on
gamma matrices are raised and lowered from the left by the charge conjugation matrix. �a

αβ

is assumed to be symmetric. The de Rham differential acts from the right, and wedge product
multiplication of forms is understood.

The superalgebra of the supertranslation group is

{Qα,Qβ} = �a
αβPa. (2)

The corresponding group manifold can be parameterized:

g(Z) = exaPa eθαQα ZA = (xa, θα). (3)

The left vielbein is defined by

L(Z) = g−1(Z) dg(Z) = dZMLM
A(Z)TA, (4)

where TA represents the full set of superalgebra generators. Its explicit components are

La = dxa − 1
2 dθ �aθ Lα = dθα. (5)

The right vielbein is defined similarly

R(Z) = dg(Z)g−1(Z) = dZMRM
A(Z)TA. (6)

The left action of the supertranslation group on itself is defined by

g(Z′) = g(ε)g(Z). (7)

This action is generated by operators QA (‘left generators’). One finds

δZM = εAQAZM = εARA
M, (8)

where RA
M are the inverse right vielbein components, defined by

RA
MRM

B = δA
B. (9)

Explicitly this yields

Qαxm = − 1
2 (�mθ)α, Qαθµ = δα

µ

Qax
m = δa

m, Qaθ
µ = 0.

Forms that are invariant under a global left action will be called ‘left invariant.’ The left
vielbein components are left invariant by construction.

Super-Dirichlet-p-branes (Dp-branes) are κ-symmetric, (p + 1)-dimensional manifolds
(‘worldvolumes’) embedded in the background superspace. Dp-branes in type IIA superspace
exist only for p even, while those in type IIB superspace exist only for p odd. Actions for
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D-branes have been developed in both flat and more general backgrounds [23–26]. We now
present the action with the conventions adopted in this paper.

Let the worldvolume be parameterized by coordinates σ i . The worldvolume metric gij is
defined using the pullbacks of the left vielbein components:

Li
A = ∂iZ

MLM
A gij = Li

aLj
bηab. (10)

The action consists of two terms:

S = SDBI + SWZ. (11)

The DBI (Dirac–Born–Infeld) term is

SDBI = −
∫

dp+1σ
√−det(gij + Fij ). (12)

F is a 2-form1:

F = B − dA. (13)

A = dσ iAi is the BI worldvolume gauge field, which is a 1-form defined only on the
worldvolume. The NS–NS potential B is a superspace 2-form defined by

dB = H, (14)

where H is the left invariant, NS–NS 3-form field strength. For type IIA superspace, H is

H = 1
2La dθ �11�a dθ, (15)

while for type IIB:

H = − 1
2La dθ �aσ3 dθ. (16)

It is a characteristic feature of super-p-branes of various types that closure of field strengths
requires ‘Fierz identities’ for products of gamma matrices. Closure of H requires a ‘standard’
identity [24]. For type IIA superspace this can be written as

�a
(αβ(�11�a)γ δ) = 0, (17)

while for type IIB:

�a
(αβ(�aσ3)γ δ) = 0. (18)

The second term in the action is the WZ term:

SWZ =
∫

b. (19)

It is defined by the formal sum of forms:

b = b̆ eF . (20)

The form of degree p + 1 is selected from this sum and the integral is then performed over the
worldvolume of the brane. In general we will denote the form of a specific degree in a formal
sum by a number in brackets. For example,

b̆ = ⊕b̆(n). (21)

The R-R (Ramond) potentials b̆(n) are defined by

R = db̆ + b̆H. (22)

The R-R field strengths R(n) are left invariant superspace forms:

R(n) = (−1)p dθ S(n−2) dθ, (23)

1 It suits us to have dF = H . Hence the difference in sign convention with respect to some prior literature.
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where for type IIA superspace the S(n) are given by

S(n) = 1

2n!
La1 . . . Lan�a1...an

�11
[ n

2 +1], (24)

while for type IIB:

S(n) = 1

2n!
La1 . . . Lan�a1...an

σ3
[ n+1

2 +1]σ1. (25)

It follows from (22) that the total field strength for the WZ term is the degree p + 2 piece of

h = db = R eF . (26)

Closure of h is equivalent to some more general Fierz identities. For type IIA superspace these
are

(m − 1)
(
�11

m
2 �[a1...am−2

)
(αβ

(
�11�am−1]

)
γ δ)

− �am
(αβ

(
�11

m+2
2 �a1...am

)
γ δ)

= 0, (27)

while for type IIB:

(m − 1)
(
�[a1...am−2σ3

m+1
2 σ1

)
(αβ

(
�am−1]σ3

)
γ δ)

+ �am
(αβ

(
�a1...am

σ3
m+3

2 σ1
)
γ δ)

= 0. (28)

Most of these can be shown to hold by the repeated use of the m = 2 identity [24, 25].
Left invariance of the action requires that the BI gauge field must transform under the left

action of the supertranslation group. This transformation is determined by the requirement
that the potential F must be left invariant. Since [d,QA] = 0, it is required:

dQAA = QAB. (29)

From the left invariance of H it follows that

QAB = −dWA (30)

for some set of 1-forms WA. Hence,

QAAi = −(WA)i (31)

is the required transformation of the BI gauge field [7]. Furthermore, since H is CE nontrivial,
there does not exist a potential B such that QAB = 0 for all QA [3, 4].

2.2. Manifestly left invariant action

The variation of the WZ term of the standard action under the left group action is analogous
to (30); from the left invariance of h it follows that the variation of the WZ term is a total
derivative:

QAb = −dwA. (32)

Since h is CE nontrivial, there does not exist a potential b such that QAb = 0 for all QA

[3, 4]. As a result, the standard Lagrangian is not manifestly left invariant.
A manifestly left invariant formulation for D-branes which we will not explicitly describe

here is the ‘scale invariant’ approach [12]. For the purposes of this paper we find it more
convenient to define a simple, manifestly left invariant generalization of the standard action.
First introduce an additional worldvolume p-form gauge field:

a = dσ ip . . . dσ i1ai1...ip

1

p!
(33)

satisfying

QAai1...ip = −(wA)i1...ip . (34)

One then uses the alternative action:

S = −
∫

dp+1σ
√−det(gij + Fij ) +

∫
f f = b − da. (35)

Unlike the components of the BI gauge field, the fields ai1...ip are not physical degrees of
freedom since they appear trivially (in a total derivative) in the action.
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2.3. Type IIB SO(2) rotations

There are various dualities relating different D-brane actions [27]. If one includes nonvanishing
background scalars (dilaton and axion) in the action, the dualities can be explicitly studied.
Although this is an indirect issue for the purposes of this paper, in section 4 we will find
it useful to consider the rotations of the type IIB D-string action. Classically there is an
SL(2, R) duality, but quantum considerations restrict this to SL(2, Z). There is then an
SL(2, Z) multiplet of (p, q)-strings [27–31]. Although the background scalars transform
inhomogeneously under SL(2, R), one may consistently set them to zero if one considers only
the SO(2) automorphism subgroup. The Pauli matrix σ2 can be taken as the generator for these
automorphisms, and the standard type IIB superspace action corresponds to a particular choice
of SO(2) frame [24]. We wish to investigate how these frame rotations affect the results. The
automorphisms can be implemented via rotations of the Pauli matrices [25]. However, for
studying the properties of the Noether charge algebra it is useful to have an implementation
in terms of field transformations instead. Such possibilities were considered in [8]. We take

xφ = x θφ = eiφσ2θ. (36)

The worldvolume metric is invariant under these transformations. The worldvolume gauge
field Aφ is defined as usual by its transformation properties (in particular, the left invariance
of F must be preserved). The set of type IIB D-brane actions Sφ with a free angular parameter
φ is then

Sφ[Z,A] = S[Zφ,Aφ]. (37)

3. D-brane cohomology

Using cohomological methods to investigate the anomalous terms of the Noether charge
algebra gives insight into their geometrical origin. A constant ghost partner eA is introduced
for each superspace coordinate. A ‘generalized’ (m, n)-form Y is then written as

Y = eBn . . . eB1LAm . . . LA1YA1...Am,B1...Bn

1

m!n!
. (38)

The space of (m, n)-forms will be denoted as m,n, and the collection of such spaces
∗,∗. Because D-branes have worldvolume forms that cannot be defined on the background
superspace, the space m,n will consist of worldvolume forms. Where a superspace form is
used in the construction, the pullback of that form to the worldvolume is implied. A ghost
differential s introduced in [11] can be defined by the properties:

• s is a right derivation. That is, if X and Y are generalized forms and n is the ghost degree
of Y then

s(XY) = Xs(Y ) + (−1)ns(X)Y. (39)

• If X has ghost degree zero then

sX = eAQAX. (40)

•
seA = 1

2eCeBtBC
A, (41)

where tBC
A are the structure constants of the supertranslation algebra.
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3 dB

2 B ♦
↑ 1 W ♦
d 0 N sN

0 1 2 3

Figure 1. Descending sequence for the NS–NS field strength.

The operators s and d commute. However, for {s, d,∗,∗} to define a double complex we
must show that s is nilpotent (i.e. s2 = 0). In the case of p-branes where everything is
defined on the background superspace, this turns out to be identically true. For D-branes, the
transformation properties of the BI gauge field (which is not part of the background) complicate
the issue. Nilpotency of s does not hold for an action on arbitrary fields (for example s2A �= 0).
However, the BI gauge field appears in the action only through the potential F. One of the
defining properties of F is its left invariance, which may be written as [12]:

sF = 0. (42)

It follows that s is nilpotent (and defines a double complex) when we restrict the BI gauge
field to appear in ∗,∗ only through F.

The total differential D is [21]

D = s + (−1)n+1 d D2 = 0. (43)

Generalized l-forms are defined on an associated single complex ∗
D , which is the anti-diagonal

of the double complex:

l
D = {⊕m,n : m + n = l}. (44)

The lth cohomology of D is

Hl
D = Zl

D

/
Bl

D, (45)

where Zl
D are the D cocycles, and Bl

D are the D coboundaries. The restriction of Hl
D to

representatives within m,l−m will be denoted by Hm,l−m. The D cocycle of the p-brane is
associated with the CE nontrivial (p + 2)-form field strength of the WZ term. The D-brane
has two such field strengths: the NS–NS 3-form H and the WZ (p + 2)-form h. As a result,
there are two separate D cocycles associated with the D-brane: the ‘NS–NS cocycle’ and the
‘WZ cocycle’.

First consider the NS–NS field strength H = dB. This is a nontrivial element of the CE
cohomology in both the IIA and IIB cases [3, 4]. The D cocycle associated with H exists
in the ‘NS–NS double complex’. All elements of this complex are required to be Lorentz
invariant, generalized forms of dimension two. The commuting nature of the operators leads
to the descent equations [12]:

H = dB sB = −dW sW = dN, (46)

which are graphically depicted in the ‘tic-tac-toe box’ [32] of figure 1. The different
representatives of the NS–NS cocycle are found on the LHS of these equations. Just as
in the p-brane case, there is gauge freedom for the cocycle [21]. The gauge fields for the
NS–NS cocycle that are of interest to us are � ∈ 1,0 and � ∈ 0,1. The corresponding
transformations can be summarized as

�(B ⊕ W ⊕ N) = D(� ⊕ �). (47)
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Explicitly this gives

�B = −d� �W = s� + d� �N = s�. (48)

Gauge transformations of the BI gauge field follow from those of the cocycle potentials.
We now derive these transformations. The left transformation (31) of A can be written [12] as

sA = −W. (49)

However, due to the gauge transformations (48), the potential W is not unique. Equation (49)
then implies that the BI gauge field must transform under � and �. First, the left invariant
potential F should be gauge invariant in order to preserve the symmetries of the action. By
requiring invariance of F under � it follows that the general form for the gauge transformations
of A is

�A = −� − dϒ. (50)

However, invariance of F under � means that the gauge fields ϒ and � are not independent;
they must be related by

sϒ = �. (51)

In general this has no solution if ϒ is a scalar on the background superspace. Therefore ϒ

must be a worldvolume scalar. Note that this is analogous to the interpretation of the BI gauge
field. Equation (49) has no solution if A is defined as a superspace form (the nontriviality
of H prevents such a solution); therefore A must be a new degree of freedom defined on the
worldvolume.

The algebra of conserved charges of the D-brane action contains an anomalous term due
to the transformation properties of the BI gauge field [6, 7]. Let (PM, P i) denote the momenta
conjugate to (ZM,Ai). The minimal charges of the action are

QA =
∫

dpσ [QAZMPM + QAAiP
i]

=
∫

dpσ [RA
MPM − (WA)iP

i], (52)

where the integral is over the spatial section of the worldvolume. Introduce the fundamental
(graded) Poisson brackets for the phase space2:

[PM(σ), ZN(σ ′)} = δM
Nδ(−→σ − −→σ ′

)

[P i(σ ), Aj (σ
′)} = δi

j δ(
−→σ − −→σ ′

),
(53)

where it is assumed σ ′0 = σ 0 (i.e. equal time brackets). The Dirac delta function notation is
shorthand for the product of the p delta functions associated with the spatial coordinates of
the worldvolume. Let us denote the H 1,2 cocycle representative by

M = sW. (54)

One then obtains the ‘minimal algebra’ under Poisson bracket [7]:

[QA,QB} = −tAB
CQC −

∫
dpσ (MAB)iP

i. (55)

For convenience we define a ‘hat map’ for elements Y ∈ 1,n of the NS–NS double complex:

Ŷ = −
∫

dpσYiP
i, (56)

2 Different types of bracket operation are used in this paper. We will not explicitly indicate the type since this should
be clear within context.
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p + 2 db
· b ♦
· w ♦
· n

· ·
· ·

↑ · · ♦
d 0 r sr

0 · · · · · · p + 2

Figure 2. Descending sequence for the WZ field strength.

so that the algebra (55) is

[QA,QB} = −tAB
CQC + M̂AB. (57)

The minimal algebra is therefore already a modification by M̂AB of the standard
supertranslation algebra due to the presence of the BI gauge field. This modification will
be referred to as the ‘NS–NS anomalous term’ (since it descends from the NS–NS field
strength H).

The BI gauge field appears in the action only through its field strength. This leads to
constraints on the conjugate momenta P i [7]. First, since ∂L

∂(∂0A0)
= 0, there is the primary

constraint:

P 0 = 0. (58)

Denote the spatial worldvolume coordinates by σ I . The Euler–Lagrange equation for A0 then
yields the secondary ‘Gauss law’ constraint:

∂IP
I = 0. (59)

Now applying these constraints, and using M = dN , gives

M̂AB = −
∫

dpσ∂I (NABP I ). (60)

The NS–NS anomalous term therefore consists of topological integrals, just as the p-brane
anomalous term does. Note that once the constraints are imposed, the minimal charges lose
their status as generators of the left group action. Therefore, the constraints should be applied
only after the topological charge algebra has been evaluated.

Just as in the case of the p-brane, the minimal charges (52) are generally non-conserved,
and this is due to quasi-invariance of the WZ term [5, 7]. The second modification to the
Noether charge algebra derives from the WZ field strength. The first three descent equations
for the fields of the ‘WZ double complex’ are

h = db sb = −dw sw = dn. (61)

The sequence ends with the potential r ∈ 0,p+1, and the associated cocycle representative
sr ∈ H 0,p+2. This has been depicted in the tic-tac-toe box of figure 2. The exponential eF in
the WZ term is preserved by the operators d and s. All fields of the sequence are therefore
formal sums containing this factor. Defining

w = w̆ eF , (62)
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the descent equation sb = −dw is then equivalent to [12]

sb̆ = −w̆H − dw̆. (63)

The Hp,2 cocycle representative is then

m = m̆ eF = sw̆ eF . (64)

This leads to the algebra of conserved charges as follows. The variation of the WZ term is a
total derivative:

QALWZ = −∂iwA
i, (65)

where

wA
i = 1

p!
ε̃ip...i1iwi1...ip,A. (66)

The conserved currents associated with this quasi-invariance are then

−→
QA

i = QAZM ∂L
∂(∂iZM)

+ QAAj

∂L
∂(∂iAj )

+ wA
i ∂i

−→
QA

i = 0. (67)

Let the spatial section of the worldvolume be a closed manifold embedded in superspace by
the map �. For convenience we define a ‘bar map’ by its action on (p, n)-forms Y:

Y = (−1)p
∫

�∗Y. (68)

The conserved charges of the currents (67) are then ‘modified Noether charges’:

Q̃A = QA + wA. (69)

The Q̃A obey a modified version of the minimal algebra [7]:

[Q̃A, Q̃B} = −tAB
CQ̃C + M̂AB + mAB, (70)

with

mAB = [QA,wB} + [wA,QB} + tAB
CwC. (71)

We refer to m as the ‘WZ anomalous term’ (since it descends from the WZ field strength h).
Just as in the p-brane case, the components mAB are topological integrals since m = dn is a
closed form.

Let us investigate what happens if we use the manifestly left invariant action (35) instead
of the standard one. In this case there will be no contribution to the topological charge algebra
from quasi-invariance of the WZ term. However, the mechanism outlined for the BI gauge
field contribution also applies to the p-form gauge field [7, 12]. Since the worldvolume is
p + 1 dimensional, before constraints are taken into account, the p-form gauge field has p + 1
independent components. We will conveniently take3

ai = 1

p!
ε̃ ip...i1iai1...ip (72)

as the independent components. The left transformation of ai follows from (34) and (66):

QAai = −wA
i. (73)

Define the momenta conjugate to ai :

pi = ∂

∂(∂0ai)
L. (74)

3 Note this is the same ‘Hodge dual-like’ map used in (66).
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The conserved charges are then the Noether charges:

QA =
∫

dpσ [QAZMPM + QAAiP
i + QAaipi]

=
∫

dpσ [RA
MPM − (WA)iP

i − wA
ipi]. (75)

This yields the Noether charge algebra:

[QA,QB} = −tAB
CQC −

∫
dpσ [(MAB)iP

i + mAB
ipi], (76)

with mAB
i defined in the same way as (66), (72). These charges are once again topological in

nature as a result of constraints for the momenta conjugate to the p-form gauge field. These
constraints, which arise in the same way as those for the BI gauge field, are found to be

∂Ip0 = 0 pI = 0. (77)

In fact, since the p-form gauge field enters the action (35) trivially, we can simply evaluate the
momenta to obtain

p0 = −1 pI = 0. (78)

Using this in (76), we then recover exactly the topological charge algebra (70) of the standard

action, but with Q̃A replaced by QA. That is, the conserved charges are now strict Noether
charges instead of ‘modified’ ones. Thus, whether one uses the standard action (11) or
the manifestly invariant one (35), the algebra of conserved charges is the same. This is
essentially the result suggested in [12] for the scale invariant formulation, although with a
minor difference. In the scale invariant formulation, the p-form momenta p0 is not fixed to a
specific value as in (78), so it becomes a constant multiplying the associated anomalous term.
The same observations also clearly apply to the analogous formulations of ordinary p-brane
actions.

For p-branes, the topological charge algebras can be analysed in terms of operators and
forms based in the double complex [21]. The anomalous term is thus seen to generate an
extension of the background superalgebra by an ideal. We now show that this procedure also
applies to the anomalous terms of the D-brane Noether charge algebra. For the WZ anomalous
term (64), the only difference from the case of the p-brane is the presence of factors of F.
However, since F is left invariant, only the variations of m̆ contribute to the algebra. For the
NS–NS anomalous term, the additional feature is the presence of the momenta P i conjugate
to the components of the BI gauge field. At first this seems to complicate matters since both

the conserved charges Q̃A and the WZ anomalous term m have dependence upon Ai . This
could in principle generate ‘cross terms’ that do not arise in the case of the p-brane (because
there are no momenta in the p-brane anomalous term). However, it turns out that these cross
terms vanish. First, Ai appears only through its field strength, in products of

Fij = Bij − 2∂[iAj ]. (79)

Using the bracket:

[Fij (σ ), P k(σ ′)] = −2δ[i
k∂j ]δ(σ − σ ′), (80)

one then finds

[Fij (σ ), M̂AB] = −2∂[i∂j ]NAB(σ) = 0. (81)

If MAB is split into closed forms representing superalgebra generators, the same calculation
also holds for each generator. We thus have

[mAB, M̂CD} = 0. (82)
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It also follows that the action of the conserved charges on the anomalous terms is equivalent
to the action of the minimal charges:

[Q̃A, M̂CD} = [QA, M̂CD} [Q̃A,mCD} = [QA,mCD}. (83)

The result is that we may use the double complex to find the topological charge algebra. Define
the ‘modified left generators’:

Q̃A = QA + wA. (84)

We assign to QA the minimal algebra:

[QA,QB} = −tAB
CQC + MAB. (85)

One then finds that the algebra generated by Q̃A and {MAB,mAB} (taking forms to commute

with forms) is the same as that generated by Q̃A and {M̂AB,mAB} under Poisson brackets.
We may thus find the topological charge algebra by using the forms which represent the two
anomalous terms. It also allows the spectrum of algebras resulting from each anomalous term
to be considered in isolation. We summarize with

Theorem 1 (extension). The anomalous terms of the D-brane Noether charge algebra define
extensions of the standard supertranslation algebra by two disjoint ideals. The first derives
from the cohomology class [M] ∈ H 1,2 of representatives for the NS–NS cocycle, the second
from the class [m] ∈ Hp,2 of representatives for the WZ cocycle. The generators of both ideals
commute amongst themselves and with each other.

4. Application to (p, q)-strings

4.1. D-strings

Let us investigate a combination of the manifestly left invariant action (35) and the rotated
action (37). The SO(2) rotated fields are given by4

xφ
a = xa

θφ
αI = (eiφσ2)I J θαJ

eφ
a = ea

eφ
αI = (eiφσ2)I J eαJ[

Aφ

aφ

]
=

[
cos(2φ) − sin(2φ)

sin(2φ) cos(2φ)

] [
A

a

]
.

(86)

The string case is special in that the field strengths (H, h) transform as an SO(2) vector
doublet. The potentials and worldvolume gauge fields of the double complex will be chosen
such that they respect this transformation property. That is, only solutions to the descent
equations which transform as vector doublets under (86) will be considered. The defining
properties of the relevant doublets are

• (B, b):

dB = H = 1
2La dθ �aσ1 dθ db = h = 1

2La dθ �aσ3 dθ. (87)

• (W,w):

sB = −dW sb = −dw. (88)

4 Note that eφ
αI are chiral ghost fields while (eiφσ2 )I J is an exponential.
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• (A, a):

sA = −W sa = −w. (89)

Define left invariant potentials in the usual way:

F = B − dA f = b − da. (90)

The set of SO(2) dual actions is then given by (37) with

S = −
∫

d2σ
√−det(gij + Fij ) +

∫
f, (91)

which differs from that of [8] by the inclusion of the p-form gauge field and the gauge field
rotations. Because of the equivalence of the NS–NS and R-R sectors, all strings in the orbit
are viewed as being of the same generalized type. In fact, up to a normalization constant, the
actions S0 and Sπ

4
describe the (1, q) and (p, 1) elements of the (p, q)-strings that are related

through the SL(2, Z) duality5 [27–31].
Construction of the anomalous term follows along the lines of (76), except that no

‘Hodge dual-like’ fields are required since both worldvolume gauge fields are 1-forms. After
constraints are imposed, their conjugate momenta are constants. Define (P i, pi) as the doublet
of momenta conjugate to (Ai, ai) respectively. For convenience we define ‘hat’ and ‘check’
maps by their action on (1, n)-forms Y, y:

Ŷ = −
∫

dσ 1 YiP
i y̌ = −

∫
dσ 1 yip

i. (92)

Since the cocycle potentials (W,w) form an SO(2) doublet, and the momenta (P i, pi)

transform contragradiently, the Noether charges are SO(2) invariant:

QA =
∫

dσ 1
(
RA

MPM

)
+ ŴA + w̌A. (93)

Since the Lagrangian is manifestly left invariant, the fully modified charge algebra is then the
algebra of Noether charges:

[QA,QB} = −tAB
CQC + M̂AB + m̌AB, (94)

which is also SO(2) invariant.
Let us now solve the descent equations to find the anomalous term representatives.

Solutions can be obtained by taking linear combinations of all possible terms, and then
equating coefficients in the equation. One requires the string Fierz identities:

�a(αβ�aσ1γ δ) = 0 �a(αβ�aσ3γ δ) = 0. (95)

The first two equations dB = H and db = h are found to be solved by

B = 1
2

[
dxa − 1

4 dθ �aθ
]

dθ �aσ1θ

b = 1
2

[
dxa − 1

4 dθ �aθ
]

dθ �aσ3θ.
(96)

The next descent equations sB = −dW and sb = −dw then have the solutions:

W = − 1
2 dxa θ�aσ1e + 1

24 dθ �aθθ�aσ1e + 1
24θ�ae dθ �aσ1θ

w = − 1
2 dxa θ�aσ3e + 1

24 dθ �aθθ�aσ3e + 1
24θ�ae dθ �aσ3θ,

(97)

5 The ‘fundamental’ string used here has a DBI kinetic term rather than Nambu–Goto. All actions in the SO(2) orbit
of the action (91) are D-strings in a generalized sense.
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where e refers to the eα ghosts. We comment that solutions b and w for type IIB D-branes
with higher values of p could be deduced from [9]. We now obtain the anomalous term
representatives M = sW and m = sw:

M = 1
2 dxa e�aσ1e + 1

8 d[e�aθe�aσ1θ ]

m = 1
2 dxa e�aσ3e + 1

8 d[e�aθe�aσ3θ ].
(98)

Let us now calculate the extended algebras resulting from these representatives. First we
need to identify the gauge transformations. These are generated by Lorentz invariant fields in
0,1 of dimension two. Define some ‘rotated Pauli matrices’ as6

σ
ϕ

1 = cos(2ϕ)σ1 − sin(2ϕ)σ3 σ
ϕ

3 = sin(2ϕ)σ1 + cos(2ϕ)σ3. (99)

By requiring the gauge fields to form a vector doublet (�, λ):

� = −Exae�aσ
ϕ

1 θ λ = −Exae�aσ
ϕ

3 θ, (100)

the anomalous term remains SO(2) invariant. E and ϕ are free constants which become
polar coordinates for the equivalence class of the anomalous term. The gauge transformations
generated by (100) are

�M = s d� = −E dxa e�aσ
ϕ

1 e − 1
2E d

[
e�aθe�aσ

ϕ

1 θ
]

+ Eeae�aσ
ϕ

1 dθ

�m = s dλ = −E dxa e�aσ
ϕ

3 e − 1
2E d

[
e�aθe�aσ

ϕ

3 θ
]

+ Eeae�aσ
ϕ

3 dθ.
(101)

The equivalence classes [M] and [m] are obtained by applying these transformations to the
representatives from (98). This gives

[M]αβ = (1 − 2E) dxa
(
�aσ

ϕ

1

)
αβ

+
[
E − 1

4

]
d
[
(�aθ)(α

(
�aσ

ϕ

1 θ
)
β)

]
[M]aβ = −E

(
�aσ

ϕ

1 dθ
)
β

[m]αβ = (1 − 2E) dxa
(
�aσ

ϕ

3

)
αβ

+
[
E − 1

4

]
d
[
(�aθ)(α

(
�aσ

ϕ

3 θ
)
β)

]
[m]aβ = −E

(
�aσ

ϕ

3 dθ
)
β
.

(102)

One then notes that extended superalgebras are generated from [M] and [m] if the following
new generators are defined:

�a = −2 dxa �α = −dθα

�
ϕ

1 αβ = −d
[
(�aθ)(α

(
�aσ

ϕ

1 θ
)
β)

]
�

ϕ

3 αβ = −d
[
(�aθ)(α

(
�aσ

ϕ

3 θ
)
β)

]
.

(103)

The resulting spectrum of topological charge algebras is then

{Qα,Qβ} = −�a
αβP a +

[
E − 1

2

][(
�aσ

ϕ

1

)
αβ

�̂a +
(
�aσ

ϕ

3

)
αβ

�̌a
]

− [
E − 1

4

][
�̂

ϕ

1 αβ + �̌
ϕ

3 αβ

]
[Qα,P b] = −E

[(
�bσ

ϕ

1

)
αβ

�̂β +
(
�bσ

ϕ

3

)
αβ

�̌β
]

[Qα, �̂b] = −�b
αβ�̂β

[
Qα, �̌b

] = −�b
αβ�̌β[

Qα, �̂
ϕ

1 βγ

] = [
�a

α(β

(
�aσ

ϕ

1

)
γ )δ

− �a
δ(β

(
�aσ

ϕ

1

)
γ )α

]
�̂δ[

Qα, �̌
ϕ

3 βγ

] = [
�a

α(β

(
�aσ

ϕ

3

)
γ )δ

− �a
δ(β

(
�aσ

ϕ

3

)
γ )α

]
�̌δ.

(104)

The Jacobi identity for the algebra is satisfied due to properties of the cocycle [21]. Indeed,
one verifies that the only nontrivial Jacobi identity is given by

[Qα, {Qβ,Qγ }] + cycles = 3
2

[
�b

(αβ

(
�bσ

ϕ

1

)
γ δ)

�̂δ + �b
(αβ

(
�bσ

ϕ

3

)
γ δ)

�̌δ
]
, (105)

which vanishes by the Fierz identities.

6 The angle ϕ is unrelated to φ used to rotate the action.
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Only half the fermionic coordinates of the action are physical degrees of freedom due to
the presence of κ-symmetry. A simple condition one can use to fix κ-symmetry is θ1 = 0 [24].
In this case H vanishes. It is then simplest to fix the associated potential B and worldvolume
gauge field A to be vanishing as well. For simplicity, we will then consider only the ‘unbroken’
supersymmetries (those preserving θ1 = 0 without the need for gauge transformations). Under
these conditions, the �αβ charges vanish, as do all hatted fields and �̌α1. The free angular
parameter φ can then be scaled away into �̌a and �̌α2, and the spectrum reduces to

{Qα2,Qβ2} = −�a
αβP a +

[
E − 1

2

]
�aαβ�̌a

[Qα2, P b] = −E�bαβ�̌β2 [Qα2, �̌
b] = −�b

αβ�̌β2.
(106)

Due to the gauge condition θ1 = 0 there is no further equivalence class freedom, so this
spectrum is in its most general form. Upon rescaling, it is equivalent to the topological charge
algebra derived in [21] of the Green–Schwarz superstring action. This is not surprising since,
with the gauge fixing conditions, the ϕ = 0 action (91) becomes equivalent to the standard
Green–Schwarz superstring action [33]. The only difference is the presence of the p-form
gauge field in the WZ term, but as in (76) this gauge field has no effect upon the topological
charge algebra. The SO(2) rotation ϕ now interpolates between Green–Schwarz and Born–
Infeld forms of the action, and this also has no effect upon the charge algebra. The effect that
nonlinearly realized supersymmetries of the gauge fixed action have upon the charge algebra
is a more complicated problem that we will not address here.

4.2. (p, q)-strings

To describe (p, q)-strings, the action (91) needs modification in order to obtain the required
expression for the tension [28]. We will not explicitly give the required action here (see
[30, 31] for a ‘duality covariant’ formulation). Instead, let us simply note the following
properties of the action for a (J, j)-string:

• The action is manifestly left invariant, and is constructed from the left invariant potentials
(F, f ).

• After constraints are imposed, the momenta (P i, pi) conjugate to (Ai, ai) are

(P 0, p0) = (0, 0) (P 1, p1) = (J, j), (107)

where (J, j) are two integers.

This is sufficient information for us to give a topological charge algebra for the (J, j)-string.
The descent equations once again lead to the representatives (98) for the anomalous terms
(M,m). The simplest gauge for the resulting algebra is obtained by setting (E, ϕ) = (

1
4 , 0

)
in (104). In this case one can remove �

ϕ

1 αβ and �
ϕ

3 αβ from the algebra since they do not
appear in the anomalous term. Now impose the constraints (107), and factor out the constant
momenta from the integrals (92). The algebra is then

{Qα,Qβ} = −�a
αβP a − 1

4 [J (�aσ1)αβ�
a

+ j (�aσ3)αβ�
′a

]

[Qα,P b] = − 1
4 [J (�bσ1)αβ�

β
+ j (�bσ3)αβ�

′β
]

[Qα,�
b
] = −�b

αβ�
β

[Qα,�
′b

] = −�b
αβ�

′β
.

(108)

In the above, we have kept the charges

�
a = �

′a = 2
∫

dσ 1 ∂1x
a �

α = �
′α =

∫
dσ 1∂1θ

α (109)
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distinct, since the general construction allows this. The Jacobi identity

[Qα, {Qβ,Qγ }] + cycles = 3
2

[
J�b

(αβ(�bσ1)γ δ)�
δ

+ j�b
(αβ(�bσ3)γ δ)�

′δ]
(110)

vanishes by the Fierz identities.
These algebras have seen use in the construction of extended superspace actions. The

cases (J, j) = (0, 1) and (J, j) = (1, 0) correspond to algebras used in [4, 15], while
(J, j) = (1, 1) corresponds to an algebra used in [16]. These algebras can be used to
construct left invariant potentials F and f on the associated extended superspaces. This allows
extended superspace actions for strings and type IIB D-branes to be constructed. In [21, 22],
the spectrum of topological charge algebras of standard p-brane actions were shown to contain
the known algebras that allow the construction of left invariant WZ forms. The appearance
of known algebras associated with D-branes in (108) generalizes this result. We may observe
quite generally that the topological charge algebras generated by a brane cocycle appear to be
those which trivialize that cocycle. As a result, these algebras then allow the construction of
extended superspace actions.

Note that fermionic winding charges are formally retained and used to close the algebra.
The interpretation of fermionic generators as topological charges was considered in [18].
Such charges are generated, for example, by open strings with different values for fermionic
coordinates at the endpoints [19], or by strings bridging a brane–antibrane system [17].
Motivation is provided by the fact that fermionic brane charges are necessary in certain
backgrounds to ensure quantum consistency with Jacobi identities [20]. In flat backgrounds,
the fermionic topological charges have usually been taken to vanish due to the trivial topology
associated with fermionic coordinates [34]. In that case, the bosonic charges become ‘central’
and the entire algebra (108) reduces to

{Qα,Qβ} = −�a
αβP a − 1

4 [J (�aσ1)αβ�
a

+ j (�aσ3)αβ�
′a

]. (111)

This type of algebra can be related to partial breaking of rigid supersymmetry [35] via the
consideration of particular extended geometries of the brane [6, 36].

Since �
A

and �
′A

are physically the same charges, a reduced form of the algebra (108)
can be written where these generators are identified. This is

{Qα,Qβ} = −�a
αβP a − 1

4 [J (�aσ1)αβ + j (�aσ3)αβ]�
a

[Qα,P b] = − 1
4 [J (�bσ1)αβ + j (�bσ3)αβ]�

β
(112)

[Qα,�
b
] = −�b

αβ�
β
.

Whilst the momenta (J, j) can be viewed as scale factors in (108), this is no longer the case
in (112). The Jacobi identity:

[Qα, {Qβ,Qγ }] + cycles = 3
2 [J�b

(αβ(�bσ1)γ δ) + j�b
(αβ(�bσ3)γ δ)cd]�

δ
(113)

again vanishes.

5. Application to the D-membrane

Let us solve the descent equations for the D2-brane in order to find representatives for the two
anomalous terms of the Noether charge algebra. The Fierz identities for the membrane are
required:

�a
(αβ(�11�a)γ δ) = 0 �11(αβ(�11�a)γ δ) − �b

(αβ�abγ δ) = 0. (114)

We begin with the NS–NS sequence. The solution for B is found to be

B = 1
2

[
dxa − 1

4 dθ �aθ
]

dθ �11�aθ. (115)
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The equation sB = −dW is then solved by7

W = − 1
2 dxaθ �11�ae + 1

24 dθ �aθθ�11�ae + 1
24θ�ae dθ �11�aθ. (116)

This yields the representative M = sW for the NS–NS anomalous term:

M = 1
2 dxa e�11�ae + 1

8 d[e�aθe�11�aθ ]. (117)

We now turn to the WZ cocycle. One might deduce representatives for b and w for type IIA
D-branes from [10]; however to illustrate the procedure we will find these quantities for the
D2-brane. The equation for b̆(1) that follows from (22) is

db̆(1) = R(2), (118)

which is easily solved by

b̆(1) = 1
2 dθ �11θ. (119)

The equation for b̆(3) is then

db̆(3) = R(4) − b̆(1)H. (120)

This is solved by

b̆(3) = 1
4 dxa dxb dθ �abθ + dxa

[− 1
8 dθ �bθ dθ �abθ + 1

8 dθ �11θ dθ �11�aθ
]

+ dθ �aθ
[

1
48 dθ �bθ dθ �abθ − 1

24 dθ �11θ dθ �11�aθ
]
. (121)

From (63) we determine the equation for w̆(0):

dw̆(0) = −sb̆(1), (122)

which is easily solved by

w̆(0) = − 1
2θ �11e. (123)

The equation for w̆(2) is then

dw̆(2) = −sb̆(3) − w̆(0)H. (124)

This is solved by

w̆(2) = − 1
4 dxa dxbθ�abe + 1

24 dxa[θ�be dθ �abθ + dθ�bθθ�abe + 5θ�11e dθ �11�aθ

− dθ�11θθ�11�ae] + 1
240 [−dθ�aθ dθ �bθθ�abe + θ�ae dθ �bθ dθ �abθ

+ 2dθ�aθ dθ �11θθ�11�ae − 14 dθ �aθθ�11e dθ �11�aθ

− θ�ae dθ �11θ dθ �11�aθ ]. (125)

We then finally obtain the forms:

m̆(0) = 1
2e�11e

m̆(2) = − 1
4 dxa dxbe�abe

+ dxa
[

1
24θ�be dθ �abe − 1

24e�be dθ �abθ − 1
24 dθ �bθe�abe

− 7
24 dθ �beθ�abe + 5

24θ�11e dθ �11�ae − 5
24e�11e dθ �11�aθ

+ 1
24 dθ �11θe�11�ae + 1

24 dθ �11eθ�11�ae
]

+ 1
240 dθ �aθ dθ �bθe�abe − 1

80 dθ �aθ dθ �beθ�abe

+ 1
240θ�ae dθ �bθdθ�abe − 1

60θ�ae dθ �bedθ�abθ

− 1
240e�ae dθ �bθdθ�abθ − 1

120 dθ �aθ dθ �11θe�11�ae

7 An analogous solution (without ghost fields) appears in [7].
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− 1
120 dθ �aθ dθ �11eθ�11�ae + 1

80 dθ �ae dθ �11θθ�11�ae

− 7
120 dθ �aθθ�11e dθ�11�ae + 7

120 dθ �aθe�11e dθ�11�aθ

− 11
240 dθ �aeθ�11e dθ�11�aθ − 1

240θ�ae dθ �11θ dθ�11�ae

− 1
240θ�ae dθ �11e dθ�11�aθ + 1

240e�ae dθ �11θ dθ�11�aθ. (126)

The corresponding representative of the WZ anomalous term is given by m, where

m = m̆(0)F + m̆(2). (127)

The first term contains a topological integral of the field strength of the BI gauge field, while
the first term of m̆(2) is a familiar bosonic term:

dxa dxbe�abe (128)

that also exists in the case of ordinary p-branes [5]. These two terms, plus the first term of
(117), generate the three central extensions of the standard supertranslation algebra that are
associated with bosonic topology [7]. The remaining terms are those associated with fermionic
topology which generalize the solutions of [7, 10]. Since the number of fermionic terms is
quite large, we will not explicitly calculate the spectrum of algebras associated with the WZ
anomalous term (127) in this work.

Let us now calculate the extended algebras resulting from the NS–NS anomalous term.
Two Lorentz invariant � gauge fields with the correct dimensionality are

�1 = −xae�aθ �2 = −xae�11�aθ. (129)

A third possibility:

�3 = −2eaxbηab (130)

is equivalent to �1 since s d�3 = s d�1. Some other possibilities that we will not use here
are given in the appendix. The gauge transformations generated are

�1M = s d�1 = −dxa e�ae + eae�a dθ

�2M = s d�2 = −dxae�11�ae − 1
2 d[e�aθe�11�aθ ] + eae�11�a dθ.

(131)

The full class [M] for the anomalous term is then obtained by applying these transformations
to the representative (117):

[M] = M + E1�1M + E2�2M, (132)

where E1 and E2 are free constants which parameterize the class. This gives

[M]αβ = (1 − 2E2) dxa(�11�a)αβ − 2E1 dxa�aαβ +
[
E2 − 1

4

]
d[(�aθ)(α(�11�aθ)β)]

[M]aβ = −E1(�a dθ)β − E2(�11�a dθ)β.
(133)

One then notes that [M] generates a spectrum of extended superalgebras if three new generators
are defined8:

�a = −2 dxa �α = −dθα �αβ = −d[(�aθ)(α(�11�aθ)β)]. (134)

The resulting topological charge algebra is then

{Q̃α, Q̃β} = −�a
αβP̃ a +

[[
E2 − 1

2

]
(�11�a)αβ + E1�aαβ

]
�̂a − [

E2 − 1
4

]
�̂αβ

[Q̃α, P̃ b] = −[E1�bαβ + E2(�11�b)αβ]�̂β

[Q̃α, �̂b] = −�b
αβ�̂β

[Q̃α, �̂βγ ] = [�a
α(β(�11�a)γ )δ − �a

δ(β(�11�a)γ )α]�̂δ.

(135)

8 A term analogous to �αβ was obtained in [10]. However, due to the trivial fermionic topology used there, a
vanishing charge was obtained. One also does not obtain [Q,P ] or [P,P ] anomalous terms under this assumption
since such charges are fermionic on dimensional grounds (see [22]).
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The Jacobi identity for the algebra is again satisfied due to properties of the cocycle. One
verifies that the only nontrivial possibility is

[Q̃α, {Q̃β, Q̃γ }] + cycles = 3
2�b

(αβ(�11�b)γ δ)�̂
δ, (136)

which vanishes by the standard Fierz identity. The algebra (135) is not restricted to the
membrane. Apart from the worldvolume embedding, the DBI term of the Dp-brane action is
the same for all values of p. The NS cocycle thus generates the same algebra for all standard,
type IIA D-brane actions with p � 2. Similarly, the subalgebra of (104) which contains only
the NS charges is the same for all type IIB D-branes.

An algebra within the spectrum (135) has also been used in the context of trivializing
cocycles. In the special case E2 = 1

4 , �αβ is not present in the anomalous term and can be
excluded from the algebra. The gauge E1 = 0 then yields an algebra which corresponds to
one used in the construction of extended, type IIA superspace actions for strings, D-branes
and string–brane systems [3, 15, 17]9. We note that in both the type IIA and IIB cases, the free
constants in the spectra do not correspond to rescalings of the previously known algebras. The
Noether charge algebras of standard superspace D-brane actions thus generate new candidates
for the algebras underlying extended superspace action formulations.

6. Comments

Recently we have been investigating topological charge algebras associated with brane
cocycles. We find that these algebras are such that they allow the trivialization of the
cocycle from which they derive. As a result, in the case of p-branes, the algebras allow the
construction of left invariant WZ forms. For D-branes, they additionally allow the construction
of extended superspace actions without worldvolume gauge fields. Such actions have already
been constructed using previously known algebras [3, 4, 15–17]. We would like to determine
whether all algebras in the spectra derived in this paper can be used to construct extended
superspace actions. Work on this issue is in preparation.

For simplicity, we have here considered actions without the background scalars. If these
scalars are included, the action is invariant when they take their vacuum values. Representatives
for the required anomalous terms then result from solving the same descent equations. The
process thus depends only upon the field strengths (i.e. nontrivial cocycles) involved, and the
background scalars do not contribute directly to the topological charge algebra. However, they
may contribute indirectly through the consideration of dualities (for example, as a restriction
on the gauge fields, as in section 4.1). We note here that an algebra parameterized by the
background scalars was considered in [16]. This type of algebra might be expected to arise
as a topological charge algebra if the scalars (belonging to the coset SL(2, R)/SO(2)) are
identified with coordinates of the duality group.
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9 A redefinition �α → �11�
α is required to establish the correspondence with [15, 17].
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Appendix

A.1. Additional gauge fields

The gauge transformations (100) and (129) are not the only ones consistent with dimensionality
and Lorentz invariance. For example, in the IIA case one can also consider the gauge fields:

�(b) = e�a1...ab θθ�11�a1...ab
θ

�′(b) = e�11�
a1...ab θθ�a1...ab

θ,
(A.1)

where in �(b), b is such that �11�a1···ab
is antisymmetric, while in �′(b), b is such that �a1...ab

is
antisymmetric. The minimal Green–Schwarz superstring action appears to be special in that
this type of gauge transformation does not contribute to the topological charge algebra [21].
In the present type IIA example extra terms are contributed to (135), however there are no
extra generators required. Define �bM = s d�(b) and �′bM = s d�′(b). For E2 �= 1

4 one can
then set

�′
αβ = �αβ −

[
1

E2 − 1
4

]
(Eb�

bMαβ + E′
b�

′bMαβ). (A.2)

The only alteration to the algebra then occurs as additional terms on the RHS of [Qα,�βγ ].
These additional terms do not appear to contribute to calculations involving trivialization of
the cocycle (a point we will not illustrate here). Since this appears to be the main application
of the algebras, we chose not to make use of such gauge transformations.
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